
1

Scheduling Algorithms

2

Dispatcher vs. Scheduler

q Dispatcher
§ Low-level mechanism
§ Responsibility: context switch

• context_switch() in Linux kernel

q Scheduler
§ High-level policy
§ Responsibility: deciding which process to run

• pick_next_task() in Linux kernel

3

Scheduling performance metrics

q Min waiting time: don’t have process wait long
in ready queue

q Max CPU utilization: keep CPU busy

q Max throughput: complete as many processes
as possible per unit time

q Min response time: respond immediately

q Fairness: give each process (or user) same
percentage of CPU

4

First-Come, First-Served (FCFS)

q Simplest CPU scheduling algorithm
§ First job that requests the CPU gets the CPU
§ Nonpreemptive

q Implementation: FIFO queue

5

Process Arrival Time Burst Time
P1 0 7
P2 0 4
P3 0 1
P4 0 4

q Gantt chart

q Average waiting time: (0 + 7 + 11 + 12)/4 = 7.5

Example of FCFS

P1 P2 P3 P4Schedule:

6

P3

Process Arrival Time Burst Time
P1 0 7
P2 0 4
P3 0 1
P4 0 4

Arrival order: P3 P2 P4 P1

q Average waiting time: (9 + 1 + 0 + 5)/4 = 3.75

Example of FCFS: different arrival order

P1P2 P4

7

FCFS advantages and disadvantages

q Advantages
§ Simple
§ Fair

q Disadvantages
§ waiting time depends on arrival order
§ Convoy effect

• Short process stuck waiting for long process
• Also called head of the line blocking

8

Shortest Job First (SJF)

q Schedule the process with the shortest time

q FCFS if same time

9

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

q Gantt chart

q Average waiting time: (0 + 6 + 3 + 7)/4 = 4

Example of SJF (w/o preemption)

P1 P2 P3 P4

P1 P2P3 P4Schedule:

Arrival:

10

Shortest Remaining Time First (SRTF)

q If new process arrives w/ shorter CPU burst
than the remaining for current process,
schedule new process

q Also known as:
§ SJF with preemption
§ Shortest Time-to-Completion First (STCF)

q Advantage: reduces average waiting time
§ Provably optimal

11

q Gantt chart

q Average waiting time: (9 + 1 + 0 + 2)/4 = 3

Example of SRTF

P1 P2 P3 P4

P1 P2 P3 P4Schedule:

Arrival:

P2 P1

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

12

SJF Advantages and Disadvantages

q Advantages
§ Minimizes average wait time.
§ Provably optimal if no preemption allowed

q Disadvantages
§ Not practical: difficult to predict burst time

• Possible: past predicts future
§ May starve long jobs

13

Round-Robin (RR)

q Process runs for a predetermined time slice,
and then moves to back of queue

q Process gets preempted at the end of time
slice

q How long should the time slice be?

14

q Average waiting time: (8 + 8 + 5 + 7)/4 = 7
q Average response time: (0 + 1 + 5 + 5)/4 = 2.75
q # of context switches: 7

Example of RR:
time slice = 3

P1 P2 P3 P4Arrival:

Queue: P1
P2
P1

P1
P2

P1
P3

P2
P1
P3
P4

P2 P1
P3
P4
P2 P1

P3
P4
P2 P1

P4
P2 P1

P4

P2 P1
P4

P4

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

15

q Average waiting time: (8 + 6 + 1 + 7)/4 = 5.5
q Average response time: (0 + 0 + 1 + 2)/4 = 0.75
q # of context switches: 14

Smaller time
slice = 1

P1 P2 P3 P4Arrival:

Queue: P1
P1
P2

P1
P3
P2

P1
P4

P2 P1
P4

P4
P2
P1P1

P1
P3

P4
P2

P1
P4
P2 P1

P4
P2 P1

P4

P2P1
P4
P2 P1

P4
P2 P1

P4 P1
P4

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

16

q Average waiting time: (0 + 5 + 7 + 7)/4 = 4.75
q Average response time: same
q # of context switches: 3 (minimum)

Larger time
slice = 10

P1 P2 P3 P4Arrival:

Queue: P1
P2
P1 P1

P3
P2 P3

P4

P2 P3
P4

P4P1

P3
P2

P4

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

17

RR advantages and disadvantages

q Advantages
§ Low response time, good interactivity
§ Fair allocation of CPU across processes
§ Low average waiting time when job lengths vary widely

q Disadvantages
§ Poor average waiting time when jobs have similar lengths

• Average waiting time is even worse than FCFS!
§ Performance depends on length of time slice

• Too high è degenerate to FCFS
• Too low è too many context switches, costly

18

Priorities
q Priority is associated with each process

§ Run highest priority process that is ready
§ Round-robin among processes of equal priority

q Priority can be statically assigned
§ Some always have higher priority than others

q Priority can be dynamically changed by OS
§ Aging: increase the priority of processes that wait in the

ready queue for a long time

for (pp = proc; pp < proc+NPROC; pp++) {
if (pp->prio != MAX)

pp->prio++;
if (pp->prio > curproc->prio)

reschedule();
}

Code from

6th Edition UNIX

circa 1976

19

Priority inversion
q High priority process depends on low priority

process (e.g. to release a lock)
§ Another process with in-between priority arrives?

q Solution: priority inheritance
§ Inherit highest priority of waiting process
§ Must be able to chain multiple inheritances
§ Must ensure that priority reverts to original value

q Google for “mars pathfinder priority inversion”

P1 (low): lock(my_lock) (gets my_lock)

P2(high): lock(my_lock)

P3(medium): while (…) {}

P2 waits, P3 runs, P1 waits

P2’s effective priority less than P3!

20

Multi-Level Feedback Queue (MLFQ)

q Processes move between queues
§ Queues have different priority levels
§ Priority of process changes based on

observed behavior
q MLFQ scheduler parameters:

§ number of queues
§ scheduling algorithms for each queue
§ when to upgrade a process
§ when to demote a process
§ which queue a process will start in

MLFQ example from OSTEP book

q Rule 1: If Priority(A) > Priority(B), A runs (B
doesn’t)

q Rule 2: If Priority(A) = Priority(B), A & B run in RR
using the time slice of the queue

q Rule 3: When a job enters the system, it starts in
the topmost queue (of the highest priority)

q Rule 4: Once a job uses up its time allotment at a
given level (regardless of how many times it has
given up the CPU), its priority is reduced (i.e., it
moves down one queue)

q Rule 5: After some time period S, move all the
jobs in the system to the topmost queue

21

R

RRRRRR

User-perceived latency
determined by slowest

back-end node

2

R R R R R

Goal on individual leaf nodes:
minimize tail completion time

R

Modern Schedulers: Tail Completion Time Matters

Microsecond-scale Service Times

How to allocate processes to CPUs?

CPU0 CPU1 CPU2 CPU3

processes

22

Symmetric multiprocessing (SMP)

q Multiple identical CPUs
q Same access time to main memory
q Private cache

CPU0 CPU1 CPU2 CPU3

Shared Memory

$ $ $ $

23

Global queue of processes

q One ready queue shared across all CPUs

q Advantages
§ Good CPU utilization
§ Fair to all processes

q Disadvantages
§ Not scalable (contention for global queue lock)
§ Poor cache locality

CPU0 CPU1 CPU2 CPU3

24

How to scale a single queue?

CPU0

CPU3

CPU2

CPU1

Have a dedicated “dispatcher” core
- Avoids sync for the global queue
- Need to establish communication

channels with “worker” cores
e.g., Shinjuku

Per-CPU queue of processes

q Static partition of processes to CPUs

q Advantages
§ Easy to implement
§ Scalable (no contention on ready queue)
§ Better cache locality

q Disadvantages
§ Load-imbalance (some CPUs have more processes)

• Unfair to processes and lower CPU utilization

CPU0 CPU1 CPU2 CPU3

25

Modern OSes take hybrid approaches

q Use both global and per-CPU queues
q Migrate processes across per-CPU queues

q Processor Affinity
§ Add process to a CPU’s queue if recently run on the CPU

• Cache state may still present

CPU0 CPU1 CPU2 CPU3

26

Heterogeneous CPU topology
q Latest trends in CPUs

§ Apple silicon
§ Intel Alder Lake

q Technically AMP, but closer to SMP
§ Cores have same ISA but different speeds
§ Mix of performance (P) and efficient (E) cores

q Ex: Apple M1 Pro
§ 8 P-cores (3228MHz) & 2 E-cores (2064MHz)
§ L1 cache: 192/128KB on P-core & 128/64KB on E-core
§ L2 cache: two 12M on P-core & one 4M on E-core

q Support being added to recent OS
§ Quality of Service (QoS) classes in macOS
§ Energy Aware Scheduling in Linux

27

