
Scheduling in Linux

1



Logistics

1. HW4 deadline: 3/23 (right after spring break)

2. No TA support for HW4 during spring break

3. This Thursday 3/6 Midterm Review (solve together past midterms)

4. Next Tuesday 3/11 NO CLASS

5. Next Thursday 3/13 In-class Midterm



Real-time scheduling

q Hard real-time
§ complete critical task within guaranteed time period

q Soft real-time
§ critical processes have priority over others

q Linux supports soft real-time

2



Linux: multi-level queue with priorities
q Soft real-time scheduling policies

§ SCHED_FIFO (FCFS)
§ SCHED_RR (round robin)
§ Priority over normal tasks
§ 100 static priority levels (1..99)

q Normal scheduling policies
§ SCHED_NORMAL: standard

• SCHED_OTHER in POSIX
§ SCHED_BATCH: CPU bound
§ SCHED_IDLE: lower priority
§ Static priority is 0

• 40 dynamic priority
• “Nice” values

q sched_setscheduler(), nice()
q See “man 7 sched” for detailed overview

Nice 0

Real Time 1 

Real Time 99

Real Time 2 

Real Time 3 

…

Nice 19

Nice -20

…
…

3



Linux scheduler history
q O(N) scheduler up to 2.4

§ Simple: global run queue
§ Poor performance on multiprocessor and large N

q O(1) scheduler in 2.5 & 2.6
§ Good performance: per-CPU run queue
§ Complex and error prone logic to boost interactivity
§ No fairness guarantee

q Completely Fair Scheduler (CFS) in 2.6 and later
§ Currently default scheduler for SCHED_NORMAL
§ Processes get fair share of CPU 
§ Naturally boosts interactivity

q Alternative schedulers: BFS, MuQSS, PDS, BMQ, TT, etc.
§ https://wiki.archlinux.org/title/improving_performance#Alternative_CPU_

schedulers

4

https://wiki.archlinux.org/title/improving_performance
https://wiki.archlinux.org/title/improving_performance


Ideal fair scheduling
q Infinitesimally small time slice
q n processes: each runs uniformly at 1/nth rate

q Various approximations of the ideal
§ Lottery scheduling
§ Stride scheduling
§ Linux CFS

•1 Process

•3 Processes 1/3rd progress

5



q Approximate fair scheduling
§ Run each thread once per schedule latency (SL)
§ Weighted time slice: SL * Wi / (Sum of all Wi)

q Too many threads?
§ Lower bound on smallest time slice
§ Schedule latency = lower bound * (# threads)

Completely Fair Scheduler (CFS)

6



Picking the next process
q Pick proc with minimum virtual runtime so far

§ Virtual runtime: task->vruntime += executed time / Wi
q Example

§ P1: 1 ms burst per 10 ms (schedule latency)
§ P2 and P3 are CPU-bound
§ All processes have the same weight (1)

Ready P1
P2
P3

Slice 3ms 5ms

P2
P3 P2

P3 P1
P2
P3

1
5
5

5
0

3ms

7



Finding proc with minimum runtime fast
q Red-black tree

§ Balanced binary search tree
§ Ordered by vruntime as key
§ O(lgN) insertion, deletion, update,  O(1): find min

cfs_rq->min_vruntime

300

150

100
400

41030

q Tasks move from left of tree to the right
q min_vruntime caches smallest value
q Update vruntime and min_vruntime

§ When task is added or removed
§ On every timer tick

8



Notable implementation details

q Integer table of nice-level to weight
§ static const int prio_to_weight[40] (kernel/sched/sched.h)
§ Nice level changes by 1 è 10% weight

q cgroup
§ Fairness between users & apps, rather than threads
§ cgroup’s vruntime == sum of its threads’ vruntimes

q Upper bound on vruntime difference
§ New thread gets max vruntime in the RQ
§ When thread wakes up, its vruntime >= min_vruntime

q Load balancing based on many factors

9



Load Balancing in CFS

Goal: Equalize load across cores

What is load? The amount of work on all cores of the machine.
This is different from evening out the number of threads.

Example: if a user runs 1 CPU-intensive task and 10 tasks that mostly 
sleep, CFS might schedule the 10 mostly sleeping tasks on a single core.

How? Work stealing periodically from other cores (default every 4msec)

Can steal multiple tasks at a time to balance load quickly.



Load Balancing in CFS

Goal: Equalize load across cores

Goal 2: Maximize locality

Wake-up/Creation:
- 1-to-1: Schedule the woken-up task nearby
- 1-to-many: Spread the tasks
Stealing:
- try to steal work more frequently from cores that are “close” to 

them than from cores that are “remote”
- hierarchical load balancing



Load Balancing in Practice

(a) Slow “perfect” load balancing (b) CFS



CFS no more → EEVDF

Earliest Eligible Virtual Deadline First became the default scheduler in 
Linux 6.6

Fairness
Process lag = weighted average of every task’s vruntime - process 
current weighted vruntime

Weight based on nice value

A: vruntime=10  → lag = -10
B: vruntime=30  → lag = 10



CFS no more → EEVDF

Interactivity
CFS uses a static minimum time slice

EEVDF time slice =base time slice / weight (weight depends on nice value)
 
Deadline = vruntime + time slice + lag

Assume Tasks A, B with same vruntime and lag and Wa > Wb

● Task A: Deadline = vruntime + lag + short time slice (due to high weight)
● Task B: Deadline = vruntime + lag + longer time slice (due to low weight)

EEVDF picks Task A to run



Hierarchical scheduling class in Linux

pick_next_task() in kernel/sched/core.c essentially does this:

for (class = sched_class_highest; 
class != NULL; 
class = class->next;) 

{
p = class->pick_next_task(rq);
if (p)

return p;    
}

// The idle class should always have a runnable task
BUG();



struct sched_class (up to kernel 5.8)

const struct sched_class rt_sched_class = {
.next               = &fair_sched_class,
.enqueue_task = enqueue_task_rt,
.dequeue_task = dequeue_task_rt,
.yield_task = yield_task_rt,
.check_preempt_curr = check_preempt_curr_rt,
.pick_next_task = pick_next_task_rt,
.put_prev_task = put_prev_task_rt,
.set_next_task = set_next_task_rt,



Array of sched_class
• Sched classes are now arranged in an array by linker scripts

• include/asm-generic/vmlinux.lds.h:
#define SCHED_DATA \

STRUCT_ALIGN(); \
__begin_sched_classes = .; \
*(__idle_sched_class) \
*(__fair_sched_class) \
*(__rt_sched_class) \
*(__dl_sched_class) \
*(__stop_sched_class) \
__end_sched_classes = .;

• for_class_range() macros in 5.8:
#define for_class_range(class, _from, _to) \

for (class = (_from); class != (_to); class = class->next)

• for_class_range() macros in 5.10:
#define for_class_range(class, _from, _to) \

for (class = (_from); class != (_to); class--)



Runqueue data structures

• struct rq (kernel/sched/sched.h)
• Main per-CPU runqueue data structure
• Contains per-sched_class runqueues: cfs_rq, rt_rq, etc.

• struct sched_entity (include/linux/sched.h)
• sched_<class>_entity for each sched_class (except that sched_entity is for cfs)
• Member of task_struct, one per each sched_class

• task_struct.sched_class
• Pointer to the current sched_class for the task
• sched_setscheduler() syscall changes process’s sched_class


