
Paging
W4118 Operating Systems I

columbia-os.github.io

Credits to Jae

http://columbia-os.github.io

Reminder: Virtual Address Space

Memory Management Goals
● Sharing: multiple processes should coexist in physical memory

● Transparency: a given process shouldn’t be aware about sharing physical
memory

● Protection: processes shouldn’t be able to access memory belonging to other
processes or kernel

● Efficiency: physical memory should not be wasted

● Performance: shouldn’t trap into the kernel for every pointer dereference

Efficiency: Avoid internal fragmentation

Space in an allocated chunk of memory goes unused

- Solution: Allocate memory in smaller chunks

- Pitfall: Too many allocations and high bookkeeping cost

- Goal: Balance chunk size with allocation/bookkeeping overhead

Efficiency: Avoid external fragmentation

While there may be X bytes of free space, those X bytes may not be
contiguous, meaning that the allocator can’t create a chunk of X bytes

- Solution: Defragmentation (make free chunks contiguous)

- Pitfall: Requires extensive data movement

- Need to avoid doing it as much as possible

Selecting where to allocate memory

● Best Fit: Try to reduce space wastage and fit as closely as possible

● Worst Fit: Find largest chunk with the goal of having big chunks left

● First Fit: Allocate in the first chunk that fits, very fast

● Next Fit: Continue searching for the first chunk that fits after previous allocation,
fast and spreads allocations across the address space

How to keep track of the available chunks?

Memory Management Unit

Attempt 1: Contiguous Mapping

Problem: Internal Fragmentation

Huge unused region between heap and stack

Attempt 2: Segmentation

Map each region (“segment”) to memory independently

Each segment has an associated base address and size.

Invalid access: Segmentation Fault

Segmentation Example

Attempt 2: Segmentation

Map each region (“segment”) to memory independently

Each segment has an associated base address and size.

Invalid access: Segmentation Fault

Problems:

● External fragmentation
● Impossible to do fine-grain sharing
● What if two segments collide in the physical address space?

Refined Goals
● Minimize internal fragmentation

● Minimize external fragmentation

● Enable fine-grain sharing

Attempt 3: Paging

Divide virtual and physical memory into fixed-sized pages

Still have selector bits and interpret virtual address as two parts:

● Virtual Page Number (VPN)
● Page Offset

Translate VPN into Physical Frame(Page) Number PFN using page table:

Attempt 3: Paging

Divide virtual and physical memory into fixed-sized pages

Still have selector bits and interpret virtual address as two parts:

● Virtual Page Number (VPN)
● Page Offset

Translate VPN into Physical Frame(Page) Number PFN using page table:

Paging Bird’s Eye View

Paging Bird’s Eye View Example

Paging Example

8-bit virtual address space, 10-bit physical address space, 64-byte pages

● How many virtual pages per process?

Paging Example

8-bit virtual address space, 10-bit physical address space, 64-byte pages

● How many virtual pages per process?
○ Can address 2^8 = 256 of virtual bytes
○ 256B / 64B = 4 virtual pages

Paging Example

8-bit virtual address space, 10-bit physical address space, 64-byte pages

● How many virtual pages per process?
○ Can address 2^8 = 256 of virtual bytes
○ 256B / 64B = 4 virtual pages

● How many physical frames in RAM?

Paging Example

8-bit virtual address space, 10-bit physical address space, 64-byte pages

● How many virtual pages per process?
○ Can address 2^8 = 256 of virtual bytes
○ 256B / 64B = 4 virtual pages

● How many physical frames in RAM?
○ Can address 2^10 = 1024 of physical bytes
○ 1024B / 64B = 16 physical frames

Paging Example

8-bit virtual address space, 10-bit physical address space, 64-byte pages

● Translate the virtual address 241 to a physical address:

Paging Example

8-bit virtual address space, 10-bit physical address space, 64-byte pages

● Translate the virtual address 241 to a physical address:

1. Divide virtual address by page size to get VPN: 241 / 64 == 3

Paging Example

8-bit virtual address space, 10-bit physical address space, 64-byte pages

● Translate the virtual address 241 to a physical address:

1. Divide virtual address by page size to get VPN: 241 / 64 == 3
2. VPN 3 translates to PFN 8.

Paging Example

8-bit virtual address space, 10-bit physical address space, 64-byte pages

● Translate the virtual address 241 to a physical address:

1. Divide virtual address by page size to get VPN: 241 / 64 == 3
2. VPN 3 translates to PFN 8.
3. Modulo virtual address by page size to get offset: 241 % 64 == 49

Paging Example

8-bit virtual address space, 10-bit physical address space, 64-byte pages

● Translate the virtual address 241 to a physical address:

1. Divide virtual address by page size to get VPN: 241 / 64 == 3
2. VPN 3 translates to PFN 8.
3. Modulo virtual address by page size to get offset: 241 % 64 == 49

PFN 8 == 0b1000

Offset: 49 == 0b110001

Physical address: (8 * 64) + 49 == 561 == 0b1000110001

Paging Example

8-bit virtual address space, 10-bit physical address space, 64-byte pages

● Translate the virtual address 241 to a physical address:

1. Divide virtual address by page size to get VPN: 241 / 64 == 3
2. VPN 3 translates to PFN 8.
3. Modulo virtual address by page size to get offset: 241 % 64 == 49

PFN 8 == 0b1000

Offset: 49 == 0b110001

Physical address: (8 * 64) + 49 == 561 == 0b1000110001

What if 241 was given in binary 0b11110001?

Page Protection

Each page table entry also carries some metadata bits, e.g.:

● present (p): whether or not this mapping is active. This virtual page is not
mapped to physical memory

● writable (w): whether or not this page can be written to. Some architectures
have readable/executable bits too

● user (u): can this page be accessed by userspace, i.e. to protect kernel pages
from user programs

Page Protection Example

High-level Hardware Implementation

● Hardware has a dedicated Page Table Base Register (PTBR) that points to the
base of the page table
○ e.g. cr3 register in x86

● OS also needs to manage the page table – stores the base address in the
process control block (PCB)
○ e.g. task_struct in Linux

● PTBR is updated with new page table base address on context switch

Page Sharing

Copy-on-Write (COW)

Copy-on-Write (COW)

Issues with simple single-level page table
Efficiency: Data access now seems to require two memory accesses, i.e., one extra

access for page table

Memory Usage: Page table consumes unreasonable amount of space!

Consider 32-bit virtual address space (4GB), 4KB page size, page table entry size of 4B.

● num virtual pages: 2 ^ 32 / 2 ^ 12 == 2 ^ 20 == 1M
● Need page table entry per virtual page: 1M pages * 4B entry == 4MB per process?!

