Virtual File System
W4118 Operating Systems I

columbia-o0s.github.io

Credits to Jae and Hans

http://columbia-os.github.io

Virtual File System (VFS)

Many file systems and device
types can coexist on the same
system.

Different levels of the stack
have different interfaces:

e File System Interface
e VFS Interface
e Storage Level

file-system interface

VES interface

local file system
type 1

local file system
type 2

remote file system
type 1

Y

|

=

network

Virtual File System (VFS)

File System Interface:

e API for userspace programs to
interact with files

® open(), close(), read(), efc.

e Uses file descriptor to refer to
a file

e Does not expose
implementation details to the
users

file-system interface

VES interface

local file system
type 1

Y

local file system
type 2

Y

remote file system
type 1

|

=

network

Virtual File System (VFS)

Storage Level:

e Determines how data are
stored in the disk

e Userspace programs are not
burdened with these details

e Can even store data remotely,
over the network

file-system interface

VES interface

local file system
type 1

local file system
type 2

remote file system
type 1

Y

|

=

network

Virtual File System (VFS)

VFS Interface:

Abstraction layer that can
support multiple file systems
Specifies an interface (similar
to struct sched class)
that a given FS implements to
hook into the kernel

VFS dispatches operations to
a specific FS using the
interface, e.g..,

dir->inode op->mkdir ()

file-system interface

VES interface

local file system
type 1

local file system
type 2

Y

remote file system
type 1

|

=

network

VFES Data Structures

struct file: Represents an instance of an open file

e Pointed to by per-process fdtable entry, allows for open file sharing by
copying the pointer

e Stores flags, current position, etc.

e Refers to dentry via struct path £ path (which refers to the inode)

VFS interface: struct file operations *f op

e read, write, seek, etc.

VFES Data Structures

struct dentry: Basically a “hard link”: contains name of link and inode number

Break up an absolute path into dentries, one per component, e.g.,
/home/kkaffes/foo has /, home , kkaffes, foo

Path resolution is expensive to open /home/kkaffes/foo you need to:

e consult the dentry for / to find the root inode

find the root data block, iterate through it to find dentry for home

consult the dentry for home to find the inode

find the corresponding data block, iterate through it to find dentry for kkaffes
consult the dentry kkaffes to find the inode

find the corresponding data block, iterate through to find the dentry for foo
consult the dentry £oo to find the inode

find the corresponding data block, and finally read the file contents!

VFS interface: const struct dentry operations *d op
e manage dentries through dentry cache (create/remove/hash/etc), more on this later

VFES Data Structures

struct inode: Unique descriptor of a file or directory

i_ino: inode # unique per mounted file system

Can refer to fs-specific data via i_private (will be used for HW8)

VFS interface: const struct inode operations *i op

e read, write, seek, etc.

VFES Data Structures

struct super block: Descriptor of a mounted filesystem.

VFS interface: const struct super operations *s op

e inode management, journaling, syncing metadata

Dentry Cache

Linux kernel makes path resolution efficient by employing a dentry cache (dcache)

1. Mount an instance of ext2
at /home

s_root field of super block
refers to the root dentry of the
mount

ﬂ’ Open ("/fpmt/ham/&o“, O_RDONU{)

[afable

shwmat Kile

#.F‘o.e s {- pos

£_dentny. 4

[dfable

\ ?’

2

3 =denbry. /\
P, open("/ome ans /e, 0 -wRONLY)

Shwet Si\r.

lnode
i-uid
i-size
1_mwode

1 __'_r\O

\
2?’
3

"-\.Roﬂ s, {- pos

o

-F..olc.vdv\a./

By openhome fhans e 0_R0ONLY)

[dtable

Stwet S’\‘L

(<]
\
2
3

£ Raas,{ POS
£ du\w

Den’w\% (ache

‘\';s\o/-z

Super-blok

S. JCWQ: ext2 .
s-blodsize: 4096 .

~ é;véot-

Dentry Cache

Linux kernel makes path resolution efficient by employing a dentry cache (dcache)

2. P1opens
/home /hans/foo for reading

Need to read several
inodes/dentries from disk

Along the way, cache them in
the dcache

ﬂ‘ Open ("/fpmt/ham/&o", O_RDONU{)

[afable

o

\
z?’
3

fz" Open (‘ﬁmt/hans/(-},o" , 0-WR0

[dfable

\
2?’
3

shwmat Kile

#.F‘o.e s {- pos

-F.. Aeu'Ma.. 4

Shwet Si\r.

Den’w\% (ache

"-\.Roﬂ s, {- pos

i

-F..olc.niv\a./

By 0pen Came fhans e, 0_ROONLY)

[dtable

Stwet -HL

(<]

\
2
3

£ Raas,{ POS
£ dmw

lnode

i-iid
i.size
1_mode
1.ino

i_slo—

/

Super-blok

~ 5

S. kyfg: ext2 .
s-blodsize: 4096 .

~Yxodt.

Dentry Cache

Linux kernel makes path resolution efficient by employing a dentry cache (dcache)

3. P3opens /home/hans/bar
Different file than P1 and P2

/home/hans/ path resolution
cached in dcache

Need to read in hans/ directory
data block to find dentry for bar

...only to find it refers to the same
inode as foo

bar and foo are hard links to the
same inode!

ﬂ‘ Open ("/fpmt/ham/&o", O_RDONU{)

[afable

shwmat Kile

#.F‘o.e s {- pos

£_dentny. 4

f

,* 0pen (“/ﬁmz/han s/ﬁ, o“/ 0-WRo ;‘{)\

[dfable

Shwet Si\r.

"-\.Roﬂ s, {- pos

\
2?’
3

-F..olc.niv\a./

o

Den’w\% (ache

By openhome fhans e 0_R0ONLY)

[dtable

Stwet -HL

(<]

\
2
3

£ Raas,{ POS
£ dmw

lnode
i-uid
i_size
1_mwode

1 __'_ND
i_slo—

/

Super-blok

~ 5

S. kyfg: ext2 .
s-blodsize: 4096 .

~Yxodt.

