
Unix File I/O
W4118 Operating Systems I

columbia-os.github.io

Credits to Jae

http://columbia-os.github.io

UNIX: Everything is a file
Unix, and its derivatives, handle input/output from a different resources
with the same file-like interface:

● Files
● Peripheral devices
● Inter-process communication (IPC)
● Networking
● …

Advantages? Disadvantages?

UNIX: Everything is a file
Unix, and its derivatives, handle input/output from a different resources
with the same file-like interface:

● Files
● Peripheral devices
● Inter-process communication (IPC)
● Networking
● …

Advantages? Disadvantages?

+ Portability and code-reuse
+ Read, write, and execute

permissions apply uniformly

- Lack of specialization

open()
// Need to specify mode if file is being created...
int open(const char *path, int oflag, mode_t mode);
// ...otherwise, mode argument is omitted.
int open(const char *path, int oflag);

open()
// Need to specify mode if file is being created...
int open(const char *path, int oflag, mode_t mode);
// ...otherwise, mode argument is omitted.
int open(const char *path, int oflag);

Result:
- Creates an entry in the process’s File Descriptor Table(not exactly):

- Offset in the file
- Open options
- Metadata

- Returns the index of the entry, a.k.a. file descriptor

Example: simple-file.c

close()
int close(int fildes);

Deletes the file descriptor table entry at index fildes

What happens if the file is not closed before a process finishes?

lseek(): Where are we in the file?
off_t lseek(int fildes, off_t offset, int whence);

● If whence is SEEK_SET, the file offset shall be set to offset bytes
● If whence is SEEK_CUR, the file offset shall be set to its current

location plus offset
● If whence is SEEK_END, the file offset shall be set to the size of the

file plus offset – why??

Does lseek do any file I/O?

read()/write()
ssize_t read(int fildes, void *buf, size_t nbyte);

ssize_t write(int fildes, const void *buf, size_t nbyte);

For sockets, equivalent to:

ssize_t recv(int socket, void *buffer, size_t length, int flags)

ssize_t send(int socket, const void *buffer, size_t length, int flags)

What happens if multiple processes write to the same file?

C standard I/O library
FILE *fopen(const char *pathname, const char *mode); // open()

int fclose(FILE *stream); // close()

int fseek(FILE *stream, long offset, int whence); // lseek()

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
// read()

size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE

*stream); // write()

FILE *stream replaces int fd

C I/O library buffering
Goal: reduce number of read()/write() syscalls while performing
stream operations

C I/O library buffering
Goal: reduce number of read()/write() syscalls while performing
stream operations

● Solution: fread()/fwrite() call read()/write() once in a while, then
use underlying buffer.

Trace syscall invocations via strace:

● io.c vs std-io.c note how many times read() is called in each
program

Files in the kernel

Per-process file descriptor table File table entry (possibly shared)

Files in the kernel – Independent Processes

fork-then-open.c

dup()
int dup(int oldfd);

New file descriptor table slot points to the same file table entry

Parent and child after fork

open-then-fork.c

