
Unix Inter-Process
Communication (IPC)

W4118 Operating Systems I

columbia-os.github.io

Credits to Jae

http://columbia-os.github.io

Unnamed Pipes
#include <unistd.h>

int pipe(int fd[2]); // Returns: 0 if OK, –1 on error

After calling pipe()

fd[0] is opened for reading,
fd[1] is opening for writing

Unnamed Pipes – Parent & Child
pipe() and then fork():

!!!pipes are only half-duplex!!!
(one-way communication)

Q: What happens if parent read writes
to fd[1] and reads from fd[0]?

Q: How can unrelated process
communicate with each other?

connect2.c example

Named Pipe
#include <sys/stat.h>

int mkfifo(const char *path, mode_t mode); // Returns: 0 if OK, –1 on error

● mkfifo(): create a new named pipe on the filesystem
● Use file I/O syscalls to interact with special pipe file
● Shares semantics with unnamed pipe – still half-duplex

Semaphores
Definition: Integer value mainly manipulated by two methods

● Increment: increase the value of the integer
○ sem_post()

● Decrement: wait until value > 0, then decrease the integer value
○ sem_wait()
○ Blocking semantics: unlike increment, decrement blocks until value is positive

Semaphore Semantics
Initial value affects semaphore semantics:

● Binary semaphore (a.k.a. lock): initial value is 1. Protects one resource.
○ Before acquiring the resource, run sem_wait(), value -> 0
○ Use resource
○ Run sem_post()to release the resource, value -> 1

● Counting semaphore: initial value is N > 1. Protects N resources.
○ Before acquiring the resource, run sem_wait(), value -> value - 1
○ Use resource
○ Run sem_post()to release the resource, value -> value + 1

● Ordering semaphore:

sem = 0 // initial value is 0

P1: 1 -> 2 -> sem_wait() -> 4 -> 5

P2: A -> B -> C -> D -> sem_post()

Semaphore POSIX API
#include <semaphore.h>
int sem_init(sem_t *sem, int pshared, unsigned int value);
 // Returns: 0 if OK, –1 on error
int sem_destroy(sem_t *sem);
 // Returns: 0 if OK, –1 on error

Q: If semaphore is to be shared by related processes, where should semaphore be declared?

Semaphore POSIX API
#include <semaphore.h>
int sem_init(sem_t *sem, int pshared, unsigned int value);
 // Returns: 0 if OK, –1 on error
int sem_destroy(sem_t *sem);
 // Returns: 0 if OK, –1 on error

Q: If semaphore is to be shared by related processes, where should semaphore be declared?

1. Shared memory, see mmap() in a bit
2. Named semaphore

Named Semaphores
Similar semantics to named pipes

On Linux, named semaphores are stored in the filesystem under /dev/shm

#include <semaphore.h>
sem_t *sem_open(const char *name, int oflag, ...
 /* mode_t mode, unsigned int value */);
 // Returns: Pointer to semaphore if OK, SEM_FAILED on error
int sem_close(sem_t *sem);
 // Returns: 0 if OK, –1 on error
int sem_unlink(const char *name);
 // Returns: 0 if OK, –1 on error

Decrement/Increment Semaphore Options
● sem_trywait() does NOT block, returns immediately if semaphore value is 0.
● sem_wait() blocks until semaphore value is positive

○ Sets errno to EINTR if interrupted by a signal
● sem_timedwait() blocks until it times out or semaphore value is positive, whichever

happens first
○ Can sem_timedwait() be safely implemented using SIGALRM?

● sem_post() does not block

File I/O syscalls are kind of annoying
● Editing/accessing different parts of the files: have to keep calling lseek()
● Reading from the file requires read() to copy contents out of kernel to userspace buffer
● Writing to the file requires write() to copy contents out of userspace buffer into kernel

What is the alternative?

Memory-mapped I/O

Map region of your file into your virtual address space!!!

Updates to the memory-mapped region go to
memory first, then (eventually) flushed to disk

Private mapping: changes are not flushed to
disk and are not seen by other processes that
map the same region.

Shared mapping: reference the same memory.
Processes with shared mappings see each
other’s updates

mmap()
#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot, int flag, int fd, off_t off);

 // Returns: starting address of mapped region if OK, MAP_FAILED on error

● void *addr: Virtual address to place the mapping at. Prefer to pass NULL and let mmap()
decide for you (address is the return value).

● int prot: Protection of the mapped region (read, write, exec, none)
● int flag: Visibility (shared/private) + other modifiers
● int fd: file descriptor attached to file we want to map

Anonymous mappings
#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot, int flag, int fd, off_t off);

specify fd = -1 and flag = MAP_ANON | …

mmap()more powerful than malloc():

● MAP_PRIVATE: child gets its own independent copy of the mapping (like malloc())
● MAP_SHARED: child shares memory mapping with parent, both see each other’s updates

counter.c example

