POSIX Threads
W4118 Operating Systems I

columbia-o0s.github.io

Credits to Jae


http://columbia-os.github.io

Processes vs. Threads

e Processes DO NOT share virtual memory address space
e Threads DO share virtual memory address space AND file descriptors
o but each thread has its own stack

See bank0.c



Synchronization - POSIX Mutex API

#include <pthread.h>
int pthread mutex init(pthread mutex t *restrict mutex,
const pthread mutexattr t *restrict attr);
int pthread mutex destroy(pthread mutex t *mutex);
// Both return: 0 if OK, error number on failure
int pthread mutex lock (pthread mutex t *mutex);
int pthread mutex trylock(pthread mutex t *mutex);
int pthread mutex unlock (pthread mutex t *mutex);
// All return: 0 if OK, error number on failure
#include <pthread.h>
#include <time.h>
int pthread mutex timedlock (pthread mutex t *restrict mutex,
const struct timespec *restrict tsptr);
// Returns: 0 if OK, error number on failure



Deadlock



Deadlock

e Thread tries to lock the same mutex twice
e A thread holds mutex A and tries to lock mutex B, and another thread holds
mutex B and tries to lock mutex A

e Strict lock ordering can avoid deadlock
e See APUE Figures 11.11 and 11.12 for an example



Condition Variables

See condition.c



More Synchronization Primitives

e Spin locks
e Barriers
e more...



