
Advanced I/O
W4118 Operating Systems I

columbia-os.github.io

Credits to Jae

http://columbia-os.github.io

Nonblocking I/O
Two ways to make “slow” system calls nonblocking:

● call open() with O_NONBLOCK
● call fcntl() to turn on O_NONBLOCK file status flag

○ file status flag is part of the file table entry

Nonblocking slow system call returns -1 with errno set to EAGAIN if it would have
blocked

Why do that?

Modern Nonblocking I/O: io_uring
Polling for completions requires going into the kernel using a system call.

How can you avoid that?

Modern Nonblocking I/O: io_uring
Polling for completions requires going into the kernel using a system call.

How can you avoid that?

Created by Donal Hunter

I/O Multiplexing
Network example: How can we monitor two connections simultaneously?

I/O Multiplexing
Network example: How can we monitor two connections simultaneously?

1. Nonblocking reads alternating between the two connections
2. Kernel I/O multiplexing

I/O Multiplexing
select() API for I/O multiplexing

#include <sys/select.h>

int select(int maxfdp1, // max fd plus 1, or simply pass FD_SETSIZE

 fd_set *restrict readfds, // see if they're ready for reading
 fd_set *restrict writefds, // see if they're ready for writing
 fd_set *restrict exceptfds, // see if exceptional condition occurred
 // ex) urgent out-of-band data in TCP

 struct timeval *restrict tvptr); // timeout

 // Returns: count of ready descriptors, 0 on timeout,–1 on error

int FD_ISSET(int fd, fd_set *fdset);

 // Returns: nonzero if fd is in set, 0 otherwise

void FD_CLR(int fd, fd_set *fdset);
void FD_SET(int fd, fd_set *fdset);
void FD_ZERO(fd_set *fdset);

Better I/O Multiplexing
poll() API for I/O multiplexing

#include <sys/select.h>

int poll(struct pollfd fds[], // the fds to monitor

 nfds_t nfds, // number of fds to monitor
 int timeout) // timeout in milliseconds
 // Returns: count of ready descriptors, 0 on timeout,–1 on error

struct pollfd {
 int fd; // the fd to monitor of fds to monitor
 short events; // the events of interest, POLLIN for data to read, POLLOUT for for data to write
 short revents; // the events that actually occurred
}

Why is the poll() API considered better than select()?

What’s still a problem? epoll() to the rescue

