
UNIX Domain Sockets
W4118 Operating Systems I

columbia-os.github.io

Credits to Jae

http://columbia-os.github.io

Shared Memory
1. Multiple threads in a single process

○ Process address space is already shared among the threads
2. Related processes (i.e., parent and child)

○ Anonymous mmap
3. Unrelated processes

○ File-backed mmap

Synchronization
1. Multiple threads in a single process

○ pthread mutex, condition variable,...
2. Multiple processes with some shared memory

○ pthread mutex, condition variable,...
○ Unnamed POSIX semaphore

3. Multiple process with no shared memory
○ Named POSIX semaphore

Data Passing
1. Related processes

○ Unnamed pipe
i. Created by pipe()
ii. half-duplex

2. Unrelated processes
○ Named pipe (aka FIFO)

i. Created by mkfifo()
ii. half-duplex

3. Distant processes
○ TCP/UDP sockets
○ full duplex
○ reliable/unreliable and high/low overhead

Best of both worlds: UNIX domain sockets
1. Unnamed pair of connected sockets for related processes

a. Created by socketpair(AF_UNIX, …)
b. Just like a pipe but full duplex

2. Named local-only socket for unrelated processes
a. created by socket(AF_UNIX, …)
b. represented by a special file

3. Reliable when used in datagram mode
4. Can transport special things like an open file descriptor

UNIX domain sockets
int socketpair(int domain, int type, int protocol, int sv[2]);

 // Returns 0 if OK, -1 on error

Same picture as the one for pipe() but

arrows going both ways

Passing open file descriptors

