
Interrupts, Spin Locks,
and Preemption
W4118 Operating Systems I

columbia-os.github.io

Credits to Jae

http://columbia-os.github.io

Interrupts
● Hardware interrupts

○ asynchronous
○ e.g. network packet arrival, timer, key press, mouse click

● Exceptions/Faults
○ synchronous
○ e.g. dividing by zero, page fault

● Software interrupts
○ synchronous
○ x86 assembly int: raise software interrupt
○ e.g. syscall (int 0x80), debugger

Kernel Execution: Process Context
● System calls execute kernel code on behalf of a process

● Operations may sleep:
○ Sleeping requires the associated task_struct to be placed on a wait queue and

have schedule() called to switch to another task

● One kernel stack for each process

Kernel Execution: Interrupt Context
● Interrupt handlers run in interrupt

● Operations cannot sleep – execution does not have an associated task and
therefore can’t interact with the wait queue and schedule()
○ e.g. kmalloc(),copy_to/from_user() may trigger I/O which causes the caller to

sleep until the I/O is satisfied. Can’t be called from interrupt context

● All handlers share one interrupt stack per processor:
○ i.e., not the kernel stack of the interrupted task

Interrupt Handling
Key Idea: Defer most work for later

● Only time-critical work should be dealt with in the handler so that we can return
to the interrupted task ASAP. Push remainder of the work to “bottom half”
○ Several kernel mechanisms available to execute some work at a later time (e.g.,

softirqs, tasklets, kernel threads)

● Single interrupt will not nest, so handler need not be reentrant
○ … but the handler can be interrupted by a different interrupt

Interrupt Handling Examples
1. Network Packet Arrival

● Top Half: acknowledge packet arrival, move packets from NIC to memory,
prepare device for further packet arrival

● Bottom Half: propagate packets through kernel networking stack, e.g.,
TCP/IP processing

2. Real Time Clock Interrupt (older, simple version)

https://elixir.bootlin.com/linux/v3.12.74/source/drivers/char/rtc.c#L239

Mutual Exclusion
● semaphore
● pthread_mutex

These are sleeping locks. The calling task is put to sleep while it waits for the critical
section to become available.

Is this always a good idea when waiting?

Spin Lock
Instead of sleeping until the critical section is free, spin locks poll the critical section
until it is free.

High-level idea

lock() polls until flag == 0

then sets flag == 1

unlock() sets flag == 0 Any issues?

Spin Lock: Race Condition
 Task 1 Task 2

Spin Lock: Race Condition
 Task 1 Task 2

Spin Lock
Instead of sleeping until the critical section is free, spin locks poll the critical section
until it is free.

High-level idea

lock() polls until flag == 0

then sets flag == 1

unlock() sets flag == 0
Non-atomic test & set
leads to mutual exclusion

violation

Spin Lock
Instead of sleeping until the critical section is free, spin locks poll the critical section
until it is free.

High-level idea

lock() polls until flag == 0

then sets flag == 1

unlock() sets flag == 0
Correct implementation needs
atomic test_and_set hardware

instruction

Atomic Test and Set
In C pseudocode, test_and_set hardware instruction looks like:

Linux Kernel Spin Locks I
● spin_lock() / spin_unlock()

○ keep the critical sections as small as possible
○ must not lose CPU while holding a spin lock

■ other threads will wait for the lock for a long time
○ must NOT call any function that can potentially sleep

■ e.g., kmalloc(), copy_from_user()
○ spin_lock() prevents kernel preemption by ++preempt_count

■ in a uniprocessor, that’s all spin_lock() does
○ hardware interrupt is ok unless the interrupt handler may try to lock this spin lock

■ spin lock is not recursive: same thread locking twice will deadlock

Linux Kernel Spin Locks II
● spin_lock_irqsave() / spin_unlock_irqrestore()

○ save current interrupt state, disable all interrupts on local CPU, lock, unlock, restore
interrupts to how they were before

○ need to use this version if the lock is something that an interrupt handler may try to
acquire

○ no need to worry about interrupts on other CPUs – spin lock will work normally
○ no need to spin in uniprocessor – just ++preempt_count & disable irq

● spin_lock_irq() / spin_unlock_irq()
○ disable & enable irq assuming it was enabled to begin with
○ should not be used in most cases

When to use?
● spin_lock() / spin_unlock()

○ Used when code nevers needs to protect against interrupt-level concurrency on the
same CPU, e.g.:
■ the lock is only used by process context
■ the lock is only used by a single interrupt (this holds because a single interrupt

does not nest)
● spin_lock_irqsave() / spin_unlock_irqrestore()

○ Used when an interrupt handler on the same CPU can attempt to acquire the lock
while it is held, e.g.:

■ the lock is used by process and interrupt contexts
■ the lock is used by more than one interrupts

Spinning vs. Sleeping Lock
● Sleeping lock incurs cost of context-switch to put caller to sleep
● Spinning lock consumes CPU time by polling
● In interrupt context can only use spin locks
● Can’t sleep while holding spin lock

Preemption
Sometimes the kernel needs to forcefully reclaim the CPU. It track a per-process
TIF_NEED_RESCHED flag. If set, preemption occurs by calling schedule() in the
following cases:

1. Returning to user space:
a. from a system call
b. from an interrupt handler

2. Returning to kernel from an interrupt handler, only if preempt_count is zero
3. preempt_count just became zero, right after spin_unlock(), for example
4. Task running in kernel mode calls schedule() itself – e.g., blocking syscall

