
EZFS Specification
Zijian Zhang and Emma Nieh

EZFS Layout

- Each slice shown to the right is one block.
- Each block is 4096 bytes.

The Superblock

- The ezfs_super_block is padded to be 4096 bytes,
so it fits directly in the first block.

- Contains bit vectors representing which inodes and
data blocks are free.

- Bit vectors declared by macros:

DECLARE_BIT_VECTOR(free_inodes, EZFS_MAX_INODES)

DECLARE_BIT_VECTOR(free_data_blocks,
EZFS_MAX_DATA_BLKS)

- We indicate that an inode or date block is occupied
by setting the corresponding location in the bit
vector to 1

struct
ezfs_super_block

The Inode Store
- The inode store is filled with contiguous

ezfs_inodes. The maximum possible number of
inodes is crammed into the inode store:

#define EZFS_MAX_INODES (EZFS_BLOCK_SIZE / sizeof(struct
ezfs_inode))

- ezfs_inode stores metadata about a file or
directory (size, access times, mode, etc).

- Each ezfs_inode is associated with data blocks via
data_block_number (the first data block) and
nblocks (number of data blocks). The data block,
not the inode stores file or directory contents.

- Each inode is indexed by its position. The 1st
indode is inode 1; the 10th inode is inode 10. Note
that inodes are indexed from 1, not 0. The reason
is that functions in VFS that return inodes return an
unsigned int. On error, they return 0.

struct ezfs_inode

struct ezfs_inode

…

struct ezfs_inode

The Data Blocks

- Case 1: Inode corresponds to a directory
- Case 2: Inode corresponds to a regular file

The Data Blocks: Case 1 (directory)
- Inode corresponds to a directory only has one data

block.

- Data block is a series of contiguous ezfs_dir_entry.
The maximum number of entries that can be
crammed into the data block is given by:

#define EZFS_MAX_CHILDREN (EZFS_BLOCK_SIZE / sizeof(struct
ezfs_dir_entry))

- ezfs_dir_entry maps filename to inode number.

- Each ezfs_dir_entry has a flag indicating whether
it’s active or not. When we unlink a file (rm
command), we lazily delete the file by setting flag
to 0.

struct ezfs_dir_entry

struct ezfs_dir_entry

…

struct ezfs_dir_entry

The Data Blocks: Case 2 (regular file)

- Inode corresponds to a regular file can have
multiple data blocks referenced by a single direct
block and a single indirect block

- A file that only has one data block should not have
an allocated indirect block.

- A data block is a series of bytes representing file
contents.

- Empty regular file should have 0 data block.

File Contents

EZFS Data Block Index Allocation Policy

- As the size of a regular file extends, it might request for
more data blocks.

- Assign an empty block with the lowest data block
number to it.

EZFS Additional Features

- EZFS support mmap, thus executable files.

EZFS Limitations

- Although each inode can have multiple blocks, the size of a EZFS file cannot be more than the
number of entries across the direct and indirect blocks.

- Directory only has one data block, thus it can only have EZFS_MAX_CHILDREN children.

#define EZFS_MAX_CHILDREN (EZFS_BLOCK_SIZE / sizeof(struct ezfs_dir_entry))

- The number of inodes is limited by the macro EZFS_MAX_INODES. Therefore, at any given time:

files + # directories ≤ EZFS_MAX_INODES

recall that EZFS_MAX_INODES is defined as:

#define EZFS_MAX_INODES (EZFS_BLOCK_SIZE / sizeof(struct ezfs_inode))

Reference

- https://cs4118.github.io/pantryfs/pantryfs-spec.pdf, Mitchell Gouzenko

https://cs4118.github.io/pantryfs/pantryfs-spec.pdf

struct
super_block

struct
ezfs_sb_buffer_headss_fs_inso

struct
buffer_head

struct
buffer_head

sb_bh

i_store_bh

Blob of data that represents
superblock. If we have a

pointer to this data, we can
cast it directly to struct
ezfs_super_block*.

Blob of data that represents
inode store. If we have a

pointer to this data, we can
cast it directly to struct

ezfs_inode* since the inode
store is a bunch of contiguous

ezfs_inodes.

b_data

b_data

