
Wait Queues

Fridge with Blocking Get: How does it work?
Written by Dave Dirnfeld for COMS 4118 at Columbia University

Let’s imagine a simple system with one CPU with 3 processes on the run queue, and an initialized KKV

Hash Table that has no key/value pair in it. In this example n=17

spinlock_t lock;
uint32_t count;
struct list_head entries;

spinlock_t lock;
struct list_head entries;
uint32_t count;

spinlock_t lock;
struct list_head entries;
uint32_t count;

0 n...

CPU
struct task_struct (T1)

P | N
struct list_head sibling

struct task_struct (T2)

P | N
struct list_head sibling

struct task_struct (T3)

P | N
struct list_head sibling

Now, let's say T1 calls kvv_get(18). Since key = 18 is not there (i.e. bucket 0 has no entry for key 18), T1 will create an entry
for the key it is waiting for, and will go through the process of putting itself on the wait_queue until another process adds a
value for key 18.

spinlock_t lock;
uint32_t count;
struct list_head entries;

spinlock_t lock;
struct list_head entries;
uint32_t count;

spinlock_t lock;
struct list_head entries;
uint32_t count;

0 n...

CPU
struct task_struct (T1)

P | N
struct list_head sibling

struct task_struct (T2)

P | N
struct list_head sibling

struct task_struct (T3)

P | N
struct list_head sibling

struct kkv_ht_entry

 P | N
struct list_head entries

val = NULL
key = 18
size = 0

struct kkv_pair

 wait_queue_head_t q

 P | N
list_head head

uint32_t q_count

The Process of putting yourself to sleep

spinlock_t lock;
struct list_head entries;
uint32_t count;

spinlock_t lock;
struct list_head entries;
uint32_t count;

0 n...

CPU
struct task_struct (T1)

P | N
struct list_head sibling

struct task_struct (T2)

P | N
struct list_head sibling

struct task_struct (T3)

P | N
struct list_head sibling

struct kkv_ht_entry

 P | N
struct list_head entries

val = NULL
key = 18
size = 0

struct kkv_pair

 wait_queue_head_t q

 P | N
list_head head

uint32_t q_count

● T1 will call the macro DEFINE_WAIT()
● T1 will call prepare_to_wait()
● T1 will call schedule()
● Finally T1 will call finish_wait()

spinlock_t lock;
uint32_t count;
struct list_head entries;

The Process of putting yourself to sleep

spinlock_t lock;
struct list_head entries;
uint32_t count;

spinlock_t lock;
struct list_head entries;
uint32_t count;

0 n...

CPU
struct task_struct (T1)

P | N
struct list_head sibling

struct task_struct (T2)

P | N
struct list_head sibling

struct task_struct (T3)

P | N
struct list_head sibling

struct kkv_ht_entry

 P | N
struct list_head entries

val = NULL
key = 18
size = 0

struct kkv_pair

 wait_queue_head_t q

 P | N
list_head head

uint32_t q_count

When a process calls DEFINE_WAIT(wait), the OS will create
a new struct wait_queue_entry for that process. The OS fills in
the required fields as follows:

● .private = current (this points to the current process)
● .func = autoremove_wake_function (ignore for now)
● .entry = LIST_HEAD_INIT((name).entry) (next and

previous pointers point to itself)

● T1 will call the macro DEFINE_WAIT()
● T1 will call prepare_to_wait()
● T1 will call schedule()
● Finally T1 will call finish_wait()

spinlock_t lock;
uint32_t count;
struct list_head entries;

The Process of putting yourself to sleep

spinlock_t lock;
struct list_head entries;
uint32_t count;

spinlock_t lock;
struct list_head entries;
uint32_t count;

0 n...

CPU
struct task_struct (T1)

P | N
struct list_head sibling

struct task_struct (T2)

P | N
struct list_head sibling

struct task_struct (T3)

P | N
struct list_head sibling

struct kkv_ht_entry

 P | N
struct list_head entries

val = NULL
key = 18
size = 0

struct kkv_pair

 wait_queue_head_t q

 P | N
list_head head

uint32_t q_count

Like this

As you can see, the task is not on any wait_queue at this stage.
All we have is a new wait_queue_entry that we will use later to
add to the wait_list found inside the kkv_ht_entry.

.func = ar_w_function()

.private

struct wait_queue_entry wait

 P | N
struct list_head entries

● T1 will call the macro DEFINE_WAIT()
● T1 will call prepare_to_wait()
● T1 will call schedule()
● Finally T1 will call finish_wait()

spinlock_t lock;
uint32_t count;
struct list_head entries;

The Process of putting yourself to sleep

spinlock_t lock;
struct list_head entries;
uint32_t count;

spinlock_t lock;
struct list_head entries;
uint32_t count;

0 n...

CPU
struct task_struct (T1)

P | N
struct list_head sibling

struct task_struct (T2)

P | N
struct list_head sibling

struct task_struct (T3)

P | N
struct list_head sibling

struct kkv_ht_entry

 P | N
struct list_head entries

val = NULL
key = 18
size = 0

struct kkv_pair

 wait_queue_head_t q

 P | N
list_head head

uint32_t q_count

With the previous step completed, we can now call
prepare_to_wait(). At the this stage the OS will link the list_head
head found in the kkv_ht_entry->wait_queue_head_t q with the
struct list_head entry found in wait_queue_entry wait.

.func = ar_w_function()

.private

struct wait_queue_entry wait

 P | N
struct list_head entry

● T1 will call the macro DEFINE_WAIT()
● T1 will call prepare_to_wait()
● T1 will call schedule()
● Finally T1 will call finish_wait()

spinlock_t lock;
uint32_t count;
struct list_head entries;

The Process of putting yourself to sleep

spinlock_t lock;
struct list_head entries;
uint32_t count;

spinlock_t lock;
struct list_head entries;
uint32_t count;

0 n...

CPU
struct task_struct (T1)

P | N
struct list_head sibling

struct task_struct (T2)

P | N
struct list_head sibling

struct task_struct (T3)

P | N
struct list_head sibling

struct kkv_ht_entry

 P | N
struct list_head entries

val = NULL
key = 18
size = 0

struct kkv_pair

 wait_queue_head_t q

 P | N
list_head head

uint32_t q_count

Question:
Since we call prepare_to_wait() in a loop, what happens if the
wait_queue_entry wait is already on the list. Will it not be added
twice?

Answer:
No, prepare_to_wait() checks if the wait_queue_entry wait points
to itself or not. If it does not point to itself, than it is already on
a wait_queue so it does not add it.

.func = ar_w_function()

.private

struct wait_queue_entry wait

 P | N
struct list_head entry

● T1 will call the macro DEFINE_WAIT()
● T1 will call prepare_to_wait()
● T1 will call schedule()
● Finally T1 will call finish_wait()

spinlock_t lock;
uint32_t count;
struct list_head entries;

The Process of putting yourself to sleep

spinlock_t lock;
struct list_head entries;
uint32_t count;

spinlock_t lock;
struct list_head entries;
uint32_t count;

0 n...

CPU
struct task_struct (T1)

P | N
struct list_head sibling

struct task_struct (T2)

P | N
struct list_head sibling

struct task_struct (T3)

P | N
struct list_head sibling

struct kkv_ht_entry

 P | N
struct list_head entries

val = NULL
key = 18
size = 0

struct kkv_pair

 wait_queue_head_t q

 P | N
list_head head

uint32_t q_count

● T1 will call the macro DEFINE_WAIT()
● T1 will call prepare_to_wait()
● T1 will call schedule()
● Finally T1 will call finish_wait()

IMPORTANT:
After the call to prepare_to_wait() the task is both on a wait
queue AND on the runqueue.

To get off the runqueue, we need to do the next step, call
schedule()
 .func = ar_w_function()

.private

struct wait_queue_entry wait

 P | N
struct list_head entry

spinlock_t lock;
uint32_t count;
struct list_head entries;

The Process of putting yourself to sleep

spinlock_t lock;
struct list_head entries;
uint32_t count;

spinlock_t lock;
struct list_head entries;
uint32_t count;

0 n...

CPU

struct task_struct (T1)

P | N
struct list_head sibling struct task_struct (T2)

P | N
struct list_head sibling

struct task_struct (T3)

P | N
struct list_head sibling

struct kkv_ht_entry

 P | N
struct list_head entries

val = NULL
key = 18
size = 0

struct kkv_pair

 wait_queue_head_t q

 P | N
list_head head

uint32_t q_count

● T1 will call the macro DEFINE_WAIT()
● T1 will call prepare_to_wait()
● T1 will call schedule()
● Finally T1 will call finish_wait()

When T1 calls schedule() the OS will remove the task from the
runqueue. It will not be put back onto the queue until
someone wakes it up. That will happen when a process calls
kkv_put(18).

.func = ar_w_function()

.private

struct wait_queue_entry wait

 P | N
struct list_head entry

spinlock_t lock;
uint32_t count;
struct list_head entries;

The Process of putting yourself to sleep

spinlock_t lock;
struct list_head entries;
uint32_t count;

spinlock_t lock;
struct list_head entries;
uint32_t count;

0 n...

CPU
struct task_struct (T1)

P | N
struct list_head sibling

struct task_struct (T2)

P | N
struct list_head sibling

struct task_struct (T3)

P | N
struct list_head sibling

struct kkv_ht_entry

 P | N
struct list_head entries

val = NULL
key = 18
size = 0

struct kkv_pair

 wait_queue_head_t q

 P | N
list_head head

uint32_t q_count

● T1 will call the macro DEFINE_WAIT()
● T1 will call prepare_to_wait()
● T1 will call schedule()
● Finally T1 will call finish_wait()

After kkv_put() calls wake_up(), all the processes on the wait
queue are added back to the run queue, while remaining on
the wait queue.

At this point, T1 has returned from schedule(). It then returns
to slide 7, and then depending on the value of the condition,
either runs through the process again, or exits the loop..func = ar_w_function()

.private

struct wait_queue_entry wait

 P | N
struct list_head entry

spinlock_t lock;
uint32_t count;
struct list_head entries;

The Process of putting yourself to sleep

spinlock_t lock;
struct list_head entries;
uint32_t count;

spinlock_t lock;
struct list_head entries;
uint32_t count;

0 n...

CPU
struct task_struct (T1)

P | N
struct list_head sibling

struct task_struct (T2)

P | N
struct list_head sibling

struct task_struct (T3)

P | N
struct list_head sibling

struct kkv_ht_entry

 P | N
struct list_head entries

val = “os4life”
key = 18
size = 8

struct kkv_pair

 wait_queue_head_t q

 P | N
list_head head

uint32_t q_count

Sets T1 back to TASK_RUNNING and removes struct
wait_queue_entry wait from the wait_queue_head_t q if still
queued.

.func = ar_w_function()

.private

struct wait_queue_entry wait

 P | N
struct list_head entries

● T1 will call the macro DEFINE_WAIT()
● T1 will call prepare_to_wait()
● T1 will call schedule()
● Finally T1 will call finish_wait()

spinlock_t lock;
uint32_t count;
struct list_head entries;

